
1

First of all, what is FaceWorks?

Last year, NVIDIA showed off a tech demo called Digital Ira, which was a collaboration

between NVIDIA and Dr. Paul Debevec's team at USC. In this project we took this

extremely detailed head scan and performance capture, and basically threw every

graphics technique we could think of at it, to render and animate this face as well as

possible in real-time – and I think we had some good success.

Besides Digital Ira, there were also a lot of other great skin rendering papers and demos

in the last few years, and all of these served as our inspiration for creating the

FaceWorks API.

2

FaceWorks is a middleware library, under the GameWorks umbrella, that's designed to

make it easy for game developers and engine developers to integrate high-quality skin

shading into their games, with the goal of eventually enabling you to match the

rendering quality of Digital Ira. FaceWorks is still under development, but we wanted to

give you a preview today of some of the features it will enable you to add to your game

engines, such as subsurface scattering. And more features are on their way in the

future, such as a specular model for skin, and eye refraction and lighting.

3

Before we dive in, let’s see some screenshots of what the FaceWorks library can do for

your characters. I’m using Lee Perry-Smith’s head scan here, which is a very high-quality

model he kindly released as Creative Commons.

The first thing anyone ever talks about when skin shading comes up is subsurface

scattering, and this talk is no exception! Subsurface scattering is a physical process in

which light penetrates into the surface layers of the skin, bounces around and comes

back out at a different point. Without it, skin looks very hard and unnatural, almost like

a statue carved out of stone, as you see on the left here.

FaceWorks provides an implementation of subsurface scattering based on a SIGGRAPH

paper from a couple years ago by Eric Penner, called “Pre-Integrated Skin Shading”. This

technique has the advantage of requiring only a single rendering pass, as opposed to

expensive multi-pass solutions like texture-space diffusion; this makes the preintegrated

technique quite efficient and relatively easy to integrate into a game engine, yet it still

does a great job of softening the appearance of the skin and reproducing its

characteristic red glow in the shadows, as you see on the right.

4

Another thing that happens with subsurface scattering is that light can diffuse all the way

through thin areas of a face, such as the nose and ears. In FaceWorks, we refer to this

feature as “deep scatter”, and we simulate it for direct light by using the shadow map to

estimate the thickness of an object, and scaling the deep scatter effect based on the

distance the light has to travel through the model. This produces the red glow you can

see in areas like the nose and ears when they’re backlit. Deep scatter can work with

your existing shadow maps, so it doesn’t require any additional rendering passes.

5

In this screenshot you can see both the subsurface scattering and the deep scatter

effects working together. This also highlights how FaceWorks enables subsurface

scattering for ambient lighting as well. The front of the face in both of these shots is lit

entirely by image-based lighting, using a pre-convolved cubemap, and as you can see,

subsurface scattering makes a big difference in the feeling of softness for that area as

well. Meanwhile, on the right side of the face, there’s strong direct lighting from

behind, and deep scatter produces the red glow in the ear.

6

These are the two main features that FaceWorks currently offers: an efficient, one-pass

subsurface scattering solution that handles both direct light and ambient light, as well as

a deep scatter solution for direct light based on estimating thickness from a shadow map.

Currently we don’t have a solution in place for ambient-light deep scatter, but we’re still

working on that.

Also, FaceWorks currently supports Windows and D3D11 only, although in the future we’d

like to support other platforms and graphics APIs as well.

I’ll talk about how these features work at the high level, then a bit later, I’ll show a bit

of what it would look like to actually integrate FaceWorks into your game engine.

7

At the high level, FaceWorks breaks down subsurface scattering into four components,

and handles each one individually.

First, there’s the scattering due to the geometric curvature of the surface, where parts

of the model with a small radius of curvature have more apparent scattering. Second,

there’s scattering through the small bumps and features in the normal map. Third,

there’s scattering across shadow edges, from lit into unlit areas. Those first three things

take care of direct light, but finally we also need to handle ambient light.

Each of these components requires some data to be generated and marshalled by the

game engine into the pixel shaders where FaceWorks is being used.

8

For the curvature component, first we have to know what the curvature is at each point

on the mesh. In FaceWorks, we do this by precomputing the curvature per vertex; we

have a helper function that takes the mesh positions and normals, and calculates the

curvature as a single float component per vertex, which you’ll store in your vertex

buffer. Currently we just do this for the bind pose of the mesh; in principle, as a mesh

animates or deforms at runtime, its curvature values should change, but in practice it’s

hard to notice the effects of this, so we don’t worry about it.

The other piece of data we need is a precomputed lookup texture, which encodes the

scattering result for a range of curvatures and orientations to the light source, using the

diffusion profile for human skin. FaceWorks provides a function to generate this texture

as well.

Finally, at runtime, the curvature value should be interpolated from vertices down to

pixels, and then in the pixel shader we sample that lookup texture using the curvature

and N·L.

9

For the normal mapping component of SSS, in the pixel shader, we sample the normal

map twice—once as usual, and once with a higher mip level, to get a normal that’s

blurred based on the SSS radius.

In order to work out the right mip level to sample at, we also have to know the UV scale

of the mesh, i.e. how large the UV unit square is in world space. FaceWorks has a

routine to compute the average UV scale over the whole mesh, which you can call from

your art tools, and then store that UV scale alongside the mesh somewhere.

FaceWorks then combines both of these normals, as well as the curvature calculation

from the previous step, to arrive at the total diffuse lighting.

10

The last component of direct light is shadows, or more precisely, shadow edges. With

subsurface scattering, light bleeds across these edges from the lit into the unlit area.

The trick here is to use a wide shadow filter; then we’ll sharpen up the actual shadows,

and use the remaining range of the wide filter to provide that red glow in the shadowed

areas.

You can do this using the soft shadow technology of your choice, such as PCF, VSM, ESM

or something else—you just don’t want contact-hardening shadows for this, but rather a

consistent filter radius everywhere. The details of the shadow filtering are up to you.

There’s also another lookup texture that stores more precomputed scattering results for

a range of shadow configurations, and in the pixel shader we sample this texture using

the wide shadow filter result to arrive at the final shadow color.

11

Finally, we come to ambient light. In FaceWorks, we do this by evaluating the ambient

light several times, for different normal vectors. We take the two normal map samples

seen previously, and also combine them to generate a third, intermediate normal vector.

Your pixel shader evaluates ambient light for each of those three normals—you could be

using spherical harmonics, preconvolved cubemaps or some other system for ambient; it

doesn’t matter, as long as you can evaluate it for different normal vectors. Then

FaceWorks combines the three lighting values together into one, consistent with the

diffusion profile.

12

Then there’s deep scatter. While subsurface scattering models the diffusion of light

locally along the surface, deep scatter lets us compute light diffusing through the bulk of

a model, such as through the ears and nose.

Fortunately, this is a good deal simpler: the only hard part here is to get a good estimate

of an object’s thickness from a shadow map. FaceWorks provides some helper functions

for the case of standard depth maps with either parallel or perspective projections, but

you can also write your own code for this part, and you’ll need to do so if you’re using

some other type of shadow map, such as VSM or ESM, or cascaded shadow maps.

Unfortunately, we can’t handle every possible case. :)

We found it’s necessary to apply an inward normal offset to the shadow sampling position

to fix silhouette edge issues. It’s also worthwhile to use a wide filter, such as a Poisson

disk filter, to soften up the thickness values; the deep scatter result can look unnaturally

sharp otherwise.

Once you have the thickness, FaceWorks will apply a falloff based on thickness and N·L,

and return you the result. It’s useful to also multiply the result by a texture map that

represents veins, bones, and suchlike under the surface of the skin, as well as the overall

color of the deep scatter effect.

13

That’s the high-level of the advanced skin shading features that FaceWorks provides. Let

me just recap quickly, since there are a bunch of moving parts here. First you’ll need to

generate some precomputed data in your art pipeline: for each mesh that will have

FaceWorks applied, you’ll need to generate the per-vertex curvature and per-mesh UV

scale data. You’ll also need to generate the two lookup textures, which can probably

just be done once and then checked in as regular textures.

Then, in the pixel shader to actually render the model, you’ll interpolate the per-vertex

curvature, sample the normal map twice, evaluate shadows using a wide filter, evaluate

the ambient light three times using three different normals, and estimate the thickness

from the shadow map. Hand all that data off to FaceWorks and it’ll compute the

resultant diffuse lighting and deep scatter lighting, which you’ll multiply by the diffuse

color and light color as usual, and add in a specular model of your choice.

14

Now let’s look briefly at what it would take to actually integrate FaceWorks into your

game engine.

The FaceWorks API ships in two pieces. First of all, there’s a standard C API and a .dll

that you can link into your engine and tools, and redistribute with your game. This has

all the routines to precompute the various data that we saw in the previous slides, and

also a runtime API to set up the graphics state needed by the shaders.

The other piece is an HLSL API, which is a blob of code that you can #include into your

shaders and will be compiled into them. This contains the routines you’ll call from your

pixel shader, to access all the data we’ve set up and actually evaluate the lighting

equations.

15

There’s some glue code you’ll need to write to marshall all the data and get it into the

pixel shader. First of all, the FaceWorks shader code uses various internal resources such

as constant buffers, textures, and samplers. When compiling a pixel shader that uses

FaceWorks, you’ll need to use the D3D11 shader reflection interface to look up the bind

points for those resources, and store those alongside the compiled shader code

somewhere.

Then, in your game engine when you initialize your renderer, you’ll need to create a

FaceWorks context object, which will create and manage the graphics resources using

the D3D11 device.

Finally, at some point before you do a draw call, you’ll fill out a configuration struct that

contains the shader bind points as well as runtime parameters like the desired subsurface

radius, and call the FaceWorks API to set up the graphics state for that draw. This will

update constant buffers, bind things to the pipeline and so on.

16

To give you an idea of the relative performance of FaceWorks, here’s the results of

benchmarking a few scenarios. The graph shows GPU time, so lower is better, and the

numbers have been normalized relative to the control test (on the far left) of simply

rendering the mesh with standard diffuse and specular lighting, with no FaceWorks

involved.

Turning on FaceWorks subsurface scattering raises the cost by about 30%, which is quite

cheap considering how much of a visual benefit you get. It’s also much cheaper than

multi-pass texture-space techniques would be.

Adding deep scatter can increase the cost significantly, depending on how many taps you

use for the shadow thickness estimate. The sweet spot for performance versus quality is

probably somewhere around 8 taps. At that point the cost is still pretty reasonable—1.5x

the base cost—but if you have GPU time to burn, you can even go to something like 32

taps, which is 2.2x the base cost but looks quite nice.

17

As mentioned before, the FaceWorks API is still a work in progress, and there’s still much

more to be done.

We’d like to extend deep scatter to support ambient light; our current implementation

only works for direct light.

Of course, specular lighting, including proper specular occlusion, is also a very important

feature of the appearance of skin, and our library doesn’t address that right now, but

we’d like to do so in the future. Eyes are also a very important feature of faces and

we’re planning to add features for rendering realistic eyes.

The diffusion profile for human skin is hard-coded right now, and we’d like to make the

library more versatile by enabling you to customize the diffusion profile, so you can

simulate, say, creature skin that looks very different from human skin, or potentially

even other translucent materials like cloth, paper, wax, or marble.

Finally, while today FaceWorks only runs on Windows and D3D11, we hope to add support

for other APIs and platforms in the future, including OpenGL, mobile, and consoles.

18

I also want to say a few words about the art requirements. Having great rendering

technology is all well and good, but it won’t achieve its potential unless it’s fed with

high-quality art. For FaceWorks to look really good, it needs very high-quality models

and textures. The Lee Perry-Smith head scan I’ve been using for the screenshots has

about 18K triangles before tessellation, and the diffuse and normal maps are both at 4K

resolution.

The normal map for a shader like this should not be softened at all. It’s tempting for

artists to soften the normals if they don’t have a good subsurface shader to work with,

since the skin looks way too crunchy otherwise. However, a strong normal map is needed

for specular to look right on skin, and the subsurface scattering will soften the diffuse

component.

If it’s within your means, high-quality head scans are a great resource; even if you don’t

use a scanned head directly in your game, it’s still great for reference material, or as a

starting point for artists to modify.

19

The FaceWorks sample app, in addition to simply demonstrating the FaceWorks API, has a

few other goodies that you might be interested in. It has a pretty advanced physically-

based shading implementation, including a 2-lobe specular model and preconvolved

diffuse and specular cubemaps for IBL. It also uses filmic tonemapping, which just makes

everything look better, and a form of tessellation based on screen-space error that

adapts to the curvature of the mesh, adding more polygons where the curvature is high.

20

21

